Abstract
Students often experience difficulties in learning geometry due to underdeveloped geometric thinking skills, particularly in understanding the properties of geometric figures and spatial relationships. This challenge is more pronounced in inclusive classrooms, especially for slow-learner students who require more structured and contextual learning support. Therefore, teaching materials that effectively facilitate the development of geometric thinking skills are needed. This study aims to develop an ethno–Realistic Mathematics Education (ethno-RME)–based student worksheet (LKPD) incorporating Turonggo Yakso batik in the topic of geometric transformations that is valid and practical for facilitating students’ geometric thinking skills in inclusive classrooms. This study employed a Research and Development (R&D) approach using the ADDIE development model. The research subjects were students in an inclusive class at MTs Ma’arif NU Malang City, including slow-learner students. A one-group pre-test–post-test design was used. Data were collected through observation, interviews, and questionnaires and analyzed using descriptive quantitative and qualitative methods. The results indicate that the developed LKPD is highly valid, with an average validity score of 87.83%, and highly practical, with an average practicality score of 91.44%. Furthermore, the LKPD effectively facilitated students’ geometric thinking skills, as indicated by an N-Gain score of 0.65, categorized as moderate.
References
Akbar, S. (2017). Instrumen perangkat pembelajaran. PT. Remaja Rosdakarya.
Astuti, E. P., Purwoko, R. Y., & Sintiya, M. W. (2019). Bentuk etnomatematika pada batik adipurwo dalam pembelajaran pola bilangan. Journal of Mathematics Science and Education, 1(2), 1–16. https://doi.org/10.31540/JMSE.V1I2.273
Bird, J. (2002). Matematika dasar: Teori dan aplikasi praktis. Erlangga.
Borah, R. R. (2013). Slow learners: Role of teachers and guardians in honing their hidden skills. International Journal of Educational Planning & Administration, 3(2), 139–143. https://www.ripublication.com/ijepa/ijepav3n2_04.pdf
Branch, R. M. (2009). Instructional design: The ADDIE approach. Springer US. https://doi.org/10.1007/978-0-387-09506-6
Budiarto, M. T. (2000). Pembelajaran geometri dan berpikir geometri. Prosiding Seminar Nasional Matematika “Peran Matematika Memasuki Milenium III” Jurusan Matematika FMIPA ITS Surabaya. Surabaya
Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the Van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48. https://doi.org/10.5951/JRESEMATHEDUC.17.1.0031
D’Ambrosio, U. (2007). Ethnomathematics: Perspectives. North American Study Group on Ethnomathematics News, 2(1), 2–3. Retrieved from: https://nasgem.wordpress.com/wp-content/uploads/2017/07/newsletter-21-november-2007.pdf
D’Ambrosio, U., & Rosa, M. (2017). Ethnomathematics and its pedagogical action in mathematics education. 285–305. https://doi.org/10.1007/978-3-319-59220-6_12
Eldiana, N. F., Kusumaningrum, S. R., Sukma, R., & Dewi, I. (2023). Ethnomathematics: Mathematics in Batik Turonggo Yakso from Trenggalek. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(1), 1515–1524. https://doi.org/10.24127/AJPM.V12I1.6240
Firdaus, A., Maryono, I., Pendidikan Matematika, P., & Sunan Gunung Djati Bandung, U. (2024). Analisis kemampuan abstraksi matematis berdasarkan teori Van Hiele pada siswa sekolah menengah atas. Jurnal Perspektif, 8(1), 106–116. https://doi.org/10.15575/JP.V8I1.273
Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on Van Hiele’s theory. Infinity Journal, 7(1), 55–60. https://doi.org/10.22460/INFINITY.V7I1.P55-60
Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education, 3, 1–196. https://doi.org/10.2307/749957
Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23–27. https://doi.org/10.1177/0963721412469398
Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht University. Retrieved from: https://www.fisme.science.uu.nl/publicaties/literatuur/1994_gravemeijer_dissertation_0_222.pdf
Gravemeijer, K., & Terwel, J. (2000). Hans Freudenthal: A mathematician on didactics and curriculum theory. Journal of Curriculum Studies, 32(6), 777–796. https://doi.org/10.1080/00220270050167170
Hadi, F. R. (2016). Proses pembelajaran matematika pada anak slow learners (lamban belajar). Premiere Educandum: Jurnal Pendidikan Dasar Dan Pembelajaran, 6(01). https://doi.org/10.25273/PE.V6I01.295
Hendriyanto, A., Kusmayadi, T. A., & Fitriana, L. (2021). Geometric thinking ability for prospective mathematics teachers in solving ethnomathematics problem. Journal of Physics: Conference Series, 1808(1), 012040. https://doi.org/10.1088/1742-6596/1808/1/012040
Heuvel-Panhuizen, M. H. A. M. van den. (1996). Assessment and realistic mathematics education. CD-β Wetenschappelijke Bibliotheek, 19, 303. https://dspace.library.uu.nl/handle/1874/1705
Jauhari, A. (2017). Pendidikan inklusi sebagai alternatif solusi mengatasi permasalahan sosial anak penyandang disabilitas. IJTIMAIYA: Journal of Social Science and Teaching, 1(1). https://doi.org/10.21043/JI.V1I1.3099
Lestari, K. E., & Yudhanegara, M. R. (2015). Penelitian pendidikan matematika. PT. Refika Aditama.
Ma’rifah, N., Junaedi, I., & Mulyono. (2019). Tingkat kemampuan berpikir geometri siswa kelas VIII. Prosiding Seminar Nasional Pascasarjana, 2(1), 251–254. https://proceeding.unnes.ac.id/snpasca/article/view/283
Musa, L. A. D. (2016). Level berpikir geometri menurut teori Van Hiele berdasarkan kemampuan geometri dan perbedaan gender siswa kelas VII SMPN 8 Pare-pare. Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 4(2), 103–116. https://doi.org/10.24256/jpmipa.v4i2.255
Shaw, S. R. (2010). Rescuing students from the slow learner trap. Principal Leadership, 10(6), 12–16. Retrieved from: https://eric.ed.gov/?id=EJ894654
Tahmasebi, P., & Hezarkhani, A. (2012). A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Computers & Geosciences, 42, 18–27. https://doi.org/10.1016/J.CAGEO.2012.02.004
Trimurtini, Waluya, S. B., Sukestiyarno, Y. L., & Kharisudin, I. (2022). A systematic review on geometric thinking: A review research between 2017-2021. European Journal of Educational Research, 11(3), 1535–1552. https://doi.org/10.12973/EU-JER.11.3.1535
van Hiele, P. M. (1959). Development and learning process: A study of some aspects of Piaget’s psychology in relation with the didactics of mathematics. Wolters.
Wahyudi. (2016). Pengembangan model realistic mathematics education (RME) dalam peningkatan pembelajaran matematika bagi mahasiswa pedidikan guru sekolah dasar. Jurnal Pedagogik Pendidikan Dasar, 4(1), 46–57. https://doi.org/10.17509/JPPD.V4I1.21294
Wanabuliandari, S., & Purwaningrum, J. P. (2018). Pembelajaran matematika berbasis kearifan lokal Gusjigang Kudus pada siswa slow learner. EduMa: Mathematics Education Learning and Teaching, 7(1), 63–70. https://doi.org/10.24235/EDUMA.V7I1.2724
Yazdani, M. A. (2007). Correlation between students’ level of understanding geometry according to the Van Hieles’ model and students’ achievement in plane geometry. Journal of Mathematical Sciences & Mathematics Education, 2(2), 40–45. Retrieved from: http://w.msme.us/2007-1-5.pdf

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Jurnal Tadris Matematika
