Pengembangan Lembar Kerja Peserta Didik Berbasis Ethno-RME Batik Turonggo Yakso untuk Memfasilitasi Kemampuan Berpikir Geometri di Kelas Inklusi<b></b>
Full Article

Keywords

Ethno-RME
Inclusive Class
Geometric Thinking Ability
Student Worksheets

How to Cite

Pengembangan Lembar Kerja Peserta Didik Berbasis Ethno-RME Batik Turonggo Yakso untuk Memfasilitasi Kemampuan Berpikir Geometri di Kelas Inklusi. (2025). Jurnal Tadris Matematika, 8(1), 107-118. https://doi.org/10.21274/jtm.2025.8.1.107-118

Abstract

Students often experience difficulties in learning geometry due to underdeveloped geometric thinking skills, particularly in understanding the properties of geometric figures and spatial relationships. This challenge is more pronounced in inclusive classrooms, especially for slow-learner students who require more structured and contextual learning support. Therefore, teaching materials that effectively facilitate the development of geometric thinking skills are needed. This study aims to develop an ethno–Realistic Mathematics Education (ethno-RME)–based student worksheet (LKPD) incorporating Turonggo Yakso batik in the topic of geometric transformations that is valid and practical for facilitating students’ geometric thinking skills in inclusive classrooms. This study employed a Research and Development (R&D) approach using the ADDIE development model. The research subjects were students in an inclusive class at MTs Ma’arif NU Malang City, including slow-learner students. A one-group pre-test–post-test design was used. Data were collected through observation, interviews, and questionnaires and analyzed using descriptive quantitative and qualitative methods. The results indicate that the developed LKPD is highly valid, with an average validity score of 87.83%, and highly practical, with an average practicality score of 91.44%. Furthermore, the LKPD effectively facilitated students’ geometric thinking skills, as indicated by an N-Gain score of 0.65, categorized as moderate.

Full Article

References

Akbar, S. (2017). Instrumen perangkat pembelajaran. PT. Remaja Rosdakarya.

Astuti, E. P., Purwoko, R. Y., & Sintiya, M. W. (2019). Bentuk etnomatematika pada batik adipurwo dalam pembelajaran pola bilangan. Journal of Mathematics Science and Education, 1(2), 1–16. https://doi.org/10.31540/JMSE.V1I2.273

Bird, J. (2002). Matematika dasar: Teori dan aplikasi praktis. Erlangga.

Borah, R. R. (2013). Slow learners: Role of teachers and guardians in honing their hidden skills. International Journal of Educational Planning & Administration, 3(2), 139–143. https://www.ripublication.com/ijepa/ijepav3n2_04.pdf

Branch, R. M. (2009). Instructional design: The ADDIE approach. Springer US. https://doi.org/10.1007/978-0-387-09506-6

Budiarto, M. T. (2000). Pembelajaran geometri dan berpikir geometri. Prosiding Seminar Nasional Matematika “Peran Matematika Memasuki Milenium III” Jurusan Matematika FMIPA ITS Surabaya. Surabaya

Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the Van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48. https://doi.org/10.5951/JRESEMATHEDUC.17.1.0031

D’Ambrosio, U. (2007). Ethnomathematics: Perspectives. North American Study Group on Ethnomathematics News, 2(1), 2–3. Retrieved from: https://nasgem.wordpress.com/wp-content/uploads/2017/07/newsletter-21-november-2007.pdf

D’Ambrosio, U., & Rosa, M. (2017). Ethnomathematics and its pedagogical action in mathematics education. 285–305. https://doi.org/10.1007/978-3-319-59220-6_12

Eldiana, N. F., Kusumaningrum, S. R., Sukma, R., & Dewi, I. (2023). Ethnomathematics: Mathematics in Batik Turonggo Yakso from Trenggalek. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(1), 1515–1524. https://doi.org/10.24127/AJPM.V12I1.6240

Firdaus, A., Maryono, I., Pendidikan Matematika, P., & Sunan Gunung Djati Bandung, U. (2024). Analisis kemampuan abstraksi matematis berdasarkan teori Van Hiele pada siswa sekolah menengah atas. Jurnal Perspektif, 8(1), 106–116. https://doi.org/10.15575/JP.V8I1.273

Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on Van Hiele’s theory. Infinity Journal, 7(1), 55–60. https://doi.org/10.22460/INFINITY.V7I1.P55-60

Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education, 3, 1–196. https://doi.org/10.2307/749957

Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23–27. https://doi.org/10.1177/0963721412469398

Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht University. Retrieved from: https://www.fisme.science.uu.nl/publicaties/literatuur/1994_gravemeijer_dissertation_0_222.pdf

Gravemeijer, K., & Terwel, J. (2000). Hans Freudenthal: A mathematician on didactics and curriculum theory. Journal of Curriculum Studies, 32(6), 777–796. https://doi.org/10.1080/00220270050167170

Hadi, F. R. (2016). Proses pembelajaran matematika pada anak slow learners (lamban belajar). Premiere Educandum: Jurnal Pendidikan Dasar Dan Pembelajaran, 6(01). https://doi.org/10.25273/PE.V6I01.295

Hendriyanto, A., Kusmayadi, T. A., & Fitriana, L. (2021). Geometric thinking ability for prospective mathematics teachers in solving ethnomathematics problem. Journal of Physics: Conference Series, 1808(1), 012040. https://doi.org/10.1088/1742-6596/1808/1/012040

Heuvel-Panhuizen, M. H. A. M. van den. (1996). Assessment and realistic mathematics education. CD-β Wetenschappelijke Bibliotheek, 19, 303. https://dspace.library.uu.nl/handle/1874/1705

Jauhari, A. (2017). Pendidikan inklusi sebagai alternatif solusi mengatasi permasalahan sosial anak penyandang disabilitas. IJTIMAIYA: Journal of Social Science and Teaching, 1(1). https://doi.org/10.21043/JI.V1I1.3099

Lestari, K. E., & Yudhanegara, M. R. (2015). Penelitian pendidikan matematika. PT. Refika Aditama.

Ma’rifah, N., Junaedi, I., & Mulyono. (2019). Tingkat kemampuan berpikir geometri siswa kelas VIII. Prosiding Seminar Nasional Pascasarjana, 2(1), 251–254. https://proceeding.unnes.ac.id/snpasca/article/view/283

Musa, L. A. D. (2016). Level berpikir geometri menurut teori Van Hiele berdasarkan kemampuan geometri dan perbedaan gender siswa kelas VII SMPN 8 Pare-pare. Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 4(2), 103–116. https://doi.org/10.24256/jpmipa.v4i2.255

Shaw, S. R. (2010). Rescuing students from the slow learner trap. Principal Leadership, 10(6), 12–16. Retrieved from: https://eric.ed.gov/?id=EJ894654

Tahmasebi, P., & Hezarkhani, A. (2012). A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation. Computers & Geosciences, 42, 18–27. https://doi.org/10.1016/J.CAGEO.2012.02.004

Trimurtini, Waluya, S. B., Sukestiyarno, Y. L., & Kharisudin, I. (2022). A systematic review on geometric thinking: A review research between 2017-2021. European Journal of Educational Research, 11(3), 1535–1552. https://doi.org/10.12973/EU-JER.11.3.1535

van Hiele, P. M. (1959). Development and learning process: A study of some aspects of Piaget’s psychology in relation with the didactics of mathematics. Wolters.

Wahyudi. (2016). Pengembangan model realistic mathematics education (RME) dalam peningkatan pembelajaran matematika bagi mahasiswa pedidikan guru sekolah dasar. Jurnal Pedagogik Pendidikan Dasar, 4(1), 46–57. https://doi.org/10.17509/JPPD.V4I1.21294

Wanabuliandari, S., & Purwaningrum, J. P. (2018). Pembelajaran matematika berbasis kearifan lokal Gusjigang Kudus pada siswa slow learner. EduMa: Mathematics Education Learning and Teaching, 7(1), 63–70. https://doi.org/10.24235/EDUMA.V7I1.2724

Yazdani, M. A. (2007). Correlation between students’ level of understanding geometry according to the Van Hieles’ model and students’ achievement in plane geometry. Journal of Mathematical Sciences & Mathematics Education, 2(2), 40–45. Retrieved from: http://w.msme.us/2007-1-5.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Jurnal Tadris Matematika