Model Mental Konseptual Siswa Sekolah Menengah Pertama dalam Memahami Konsep Faktor Prima
Full Article


Conceptual Mental Model
Factor Trees
Prime Factors

How to Cite

Sukiyanto, S., Syamsulrizal, S., & Anggreini, D. (2021). Model Mental Konseptual Siswa Sekolah Menengah Pertama dalam Memahami Konsep Faktor Prima. Jurnal Tadris Matematika, 4(2), 153-164.


This study aimed to identify students' conceptual mental models in understanding the concept of prime factors. This study uses a qualitative and descriptive approach, using subjective analysis. Subjects in this study amounted to 71 students in class VII. The research instrument used is a test consisting of two questions. At the same time, the data collection techniques use interviews. Based on the results of data analysis, it was found that as many as  subjects were included in the conceptual mental model. Furthermore, from the research results, it can be seen that students' conceptual mental models in understanding prime factors of a number, namely, students can use factor trees and understand prime numbers. This is supported by the results of interviews with three subjects stating that students can prove that 5 and 3 are prime factors of N while 15 and 45 are not prime factors of N; this is because 3 and 5 are prime numbers while 15 and 45 are not numbers. Primes In addition, students can prove that  is the prime factorization of M.
Full Article


Adbo, K. & Taber, K. S. (2009). Learners’ mental models of the particle nature of matter: A study of 16-year-old Swedish science students. International Journal of Science Education, 31(6), pp. 757-786.

Armanza, R. & Asyhar, B. (2020). Pemahaman konseptual dan prosedural siswa SMA/MA dalam menyelesaikan soal program linier berdasarkan tipe kepribadian. Jurnal Tadris Matematika 3(2), 163-176.

As’ari, A. R, et al. (2017). Matematika K13 SMP. Edisi revisi. Jakarta: Kementerian Pendidikan dan Kebudayaan.

Burkhart, J. (2009). Building numbers from primes. Mathematics Teaching in the Middle School, 15(3), 156-167.

Coll, R.K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching 40(5), 464-486.

Fery, W., & H. Tatang. (2017). Improving primary students mathematical literacy through problem based learning and direct instruction. Educ. Res. Rev., 12(4), pp. 212–219.

Hiebert, J. (1992). Mathematical, cognitive, and instructional analyses of decimal fractions. In G. Leinhardt, R. Putnam, & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp. 283–322). Hillsdale, NJ: Lawrence Erlbaum Associates.

Hobri, et al. (2018). Senang belajar matematika kelas IV kurikulum 2013. Edisi Revisi. Jakarta: Kementerian Pendidikan dan Kebudayaan.

Hussien, A. M. (2018). Culture of traits in Arabic language education: Students’ perception of the communicative traits model. International Journal of Instruction, 11(4), 467-484.

Jansoon, N. (2009). Understanding mental models of dilution in Thai students. International Journal of Environmental & Science Education. 4(2): 147 – 168.

Jordan, R. F. (2016). Strengthen elementary students’ understanding of factors. Undergraduate Theses and Professional Papers. 25.

Kemendikbud. (2013). Permendikbud No. 81A tentang Implementasi Kurikulum Lampiran 10. Jakarta: Departemen Pendidikan dan Kebudayaan.

Permatasari, D. (2016). The role of productive struggle to enhance learning mathematics with understanding. Proceeding Of 3rd International Conference On Research, Implementation And Education Of Mathematics And Science.

Roscoe, M. & Feldman Z. (2015). Strengthening prospective elementary teachers’ understanding of factors. In Che, S. M. and Adolphson, K. A. (Eds.). Proceedings for the 42nd Annual Meeting of the Research Council on Mathematics Learning. Las Vegas, NV.

Senge, P. M. (2004). The fifth discipline. the art and practice of the learning organization. New York: Doubleday Dell Publishing Group, Inc.

Solaz-Portolẻs, J. J. & Lopez, V.S. (2007). Representations in problem-solving inscience: Directions for practice. Asia-Pacific Forum on Science Learning and Teaching,8 (2).

Sugiyono. (2016). Metode penelitian kuantitatif, kualitatif dan R & D. Bandung: PT Alfabet.

Sukiyanto. (2020). Munculnya kesadaran metakognisi dalam menyelesaikan masalah matematika. Aksioma: Jurnal Program Studi Pendidikan Matematika. 9(1). 126-132.

Utami, A. D., Sa'dijah, C., Subanji, & Irawati, S. (2019). Students' pre-initial mental model: The case of indonesian first-year of college students. International Journal of Instruction, 12(1), 1173-1188.

Van De Walle, J. et al. (2008). Elemementary and Midle Math School. United States of America: Pearson.

Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585.

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3–34). New York, NY: Routledge.

Wang, Ch. Y. (2007). The role of mentalmodelling ability, content knowledge, and mental model in general chemistry students’ understanding about moleculer polarity. A Dissertation presented to the Faculty of the Graduate School University of Missouri – Columbia.

Wijaya, A. 2011. Pendidikan Matematika Realistik Suatu Alternatif Pendekatan Pembelajaran Matematika. Yogyakarta: Graha Ilmu.

Zazkis, R. (1998). Odds and ends of odds and evens: An inquiry into students’ understanding of even and odd numbers. Educational Studies in Mathematics, 36, 73-89.

Zazkis, R., & Campbell, S. R. (1996a). Divisibility and multiplicative structure of natural numbers: Preservice teachers’ understanding. Journal for Research in Mathematics Education, 27(5), 540-563.

Zazkis, R., & Campbell, S. R. (1996b). Prime decomposition: Understanding uniqueness. Journal for Mathematical Behavior, 15, 207-218.

Zazkis, R., & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. A. Cuoco & F. R. Curcio (Eds.), Roles of representation in school mathematics: 2001 yearbook (pp. 44-52). Reston, VA: NCTM.

Zazkis, R. (2000). Factors, divisors, and multiples: Exploring the web of students’ connections. CBMS: Issue in Mathematics Educations. (8) pp. 210-238.

Zazkis, R., & Liljedahl, P. (2004). Understanding primes: The role of representation. Journal for Research in Mathematics Education, 35(5), 164-186.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Download data is not yet available.